Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering

We prove wavenumber-explicit bounds on the Dirichlet-to-Neumann map for the Helmholtz equation in the exterior of a bounded obstacle when one of the following three conditions holds: (i) the exterior of the obstacle is smooth and nontrapping, (ii) the obstacle is a nontrapping polygon, (iii) the obstacle is star-shaped and Lipschitz. We prove bounds on the Neumann-to-Dirichlet map when one of c...

متن کامل

Wave-Number-Explicit Bounds in Time-Harmonic Scattering

In this paper we consider the problem of scattering of time-harmonic acoustic waves by a bounded sound soft obstacle in two and three dimensions, studying dependence on the wave number in two classical formulations of this problem. The first is the standard variational/weak formulation in the part of the exterior domain contained in a large sphere, with an exact Dirichletto-Neumann map applied ...

متن کامل

Wavenumber-explicit continuity and coerciv- ity estimates in acoustic scattering by planar screens

We study the classical first-kind boundary integral equation reformulations of time-harmonic acoustic scattering by planar soundsoft (Dirichlet) and sound-hard (Neumann) screens. We prove continuity and coercivity of the relevant boundary integral operators (the acoustic single-layer and hypersingular operators respectively) in appropriate fractional Sobolev spaces, with wavenumber-explicit bou...

متن کامل

Boundary Integral Equations in Time-harmonic Acoustic Scattering

We first review the basic existence results for exterior boundary value problems for the Helmholtz equation via boundary integral equations. Then we describe the numerical solution of these integral equations in two dimensions for a smooth boundary curve using trigonometric polynomials on an equidistant mesh. We provide a comparison of the NystrGm method, the collocation method and the Gale&in ...

متن کامل

Wavenumber-Explicit hp-BEM for High Frequency Scattering

For the Helmholtz equation (with wavenumber k) and analytic curves or surfaces Γ we analyze the Galerkin discretization of classical combined field integral equations in an L-setting. We give abstract conditions on the approximation properties of the ansatz space that ensure stability and quasi-optimality of the Galerkin method. Special attention is paid to the hp-version of the boundary elemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 2014

ISSN: 0036-1410,1095-7154

DOI: 10.1137/130932855